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CHAPTER 1. INTRODUCTION 

Sensing and perception of road traffic and driving environment are critical in autonomous driving 
and intelligent transportation system (ITS) applications. Camera, radar, and Lidar are commonly 
used types of sensors in the transportation system for both vehicles and infrastructure. The 
operational effectiveness of such sensors installed in a vehicle is affected by their limited range 
and by other vehicles and fixed objects that partially occlude the surroundings of the vehicle. 
Elevated roadside sensors can effectively reduce the occlusion issue. However, the main 
downsides of roadside sensors are their detection ability decreasing with distance and their fixed 
tilting angle are non-optimal for some traffic situations. Nevertheless, adding roadside sensors 
could significantly enhance the vehicle’s perception range and its navigation quality. This requires 
a cooperative sensing and perception system capable of real-time data transmitting, processing, 
and fusing information from connected and automated vehicles (CAVs) and roadside sensors. 
This potential improvement is expected to benefit individual CAVs and flow-level traffic control 
and analysis in many ITS applications. 

Even if some vehicles are connected and capable of receiving and broadcasting traffic and 
road information, the initial low percentage of such vehicles does not offer both sufficient 
coverage and rate of information in vehicle-to-vehicle communication. Thus, supplementing the 
sensing capabilities of CAVs with roadside units is justified. Such a roadside perception system 
will continue to be beneficial even when the percentage of CAVs is high since the information 
redundancy improves the resilience and reliability of the system. As already mentioned, the 
limitation of infrastructure-based sensing systems is that they are installed at fixed locations (e.g., 
at intersections) and cover a relatively small area (e.g., 100-150m radius). Due to the high cost of 
infrastructure sensors only a limited number of critical locations (e.g., with complex traffic 
conditions, higher accident rates) are to be selected for sensor installation. To address the 
mentioned needs for a cooperative sensing and perception system, we developed and evaluated 
a prototype of such a system by integrating a portable Lidar-based detection system (i.e., TScan 
[1-3]) with an SAE Level 4 CAV as shown in Figure 1. 

TScan uses Lidar sensors to detect and track in real-time various types of road users, 
including trucks, cars, pedestrians, and bicycles. The TScan system was initially developed as an 
instrumented van [1] and then converted to a trailer-based unit [2] for the envisioned end user. 
TScan’s ability of detecting traffic encounters and conflicts was recently evaluated [3] to make it 
available to road safety management agencies.   

The CAV is equipped with a by-wire control system and various onboard sensors including 
Lidar, camera, and radar. In addition, vehicle-to-everything (V2X) communication devices are 
installed on both the TScan and the CAV to enable real-time message transmission of perception 
data including detection results. In this project, we validated the functionality of the cooperative 
perception system and evaluated its benefit through a case study, which aimed at improving CAV 
situation awareness and protecting vulnerable road user (VRU) safety. Field testing results 
showed that the cooperative perception system timely provided the vehicle with advanced 
information, otherwise not available due to occlusion, which improved both safety and driving 
comfort. 
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Figure 1 TScan System and Level 4 CAV 
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CHAPTER 2. SYSTEM DEVELOPMENT 

Figure 2 shows the overall structure of the cooperative perception system. In the vehicle 
platform, a LiDAR sensor is used for perception due to its high-level accuracy in providing depth 
information and a 360-degree field of view. A clustering-based 3D object detection model from 
the Autoware1 autonomous driving platform is used to detect the surrounding objects and the 
Hungarian algorithm [4] plus Kalman Filter [5] association and tracking model is applied to track 
the objects and to generate continuous trajectories. The object list generated from the tracking 
algorithm is fed into the Information Fusion module. 

TScan also utilizes LiDARs as perception sensors and applies a similar object 
detection and tracking pipeline to generate the detected object list. Coordination transformation 
is performed to convert local coordinates to GPS coordinates. Each object in the list is then 
encoded into an SAE J2735 Basic Safety Message (BSM) and broadcasted through a roadside unit 
(RSU). Note that if there are multiple objects in the list, then multiple BSMs are sent at the same 
time. An onboard unit (OBU) is installed on the vehicle platform to receive the BSMs and to 
forward the information to the Information Fusion module. The Information Fusion unit uses a 
predefined area (i.e., the roadway area) to geo-fence the objects and it fuses the object lists by 
removing redundant observations. The fused information is then input to the Path Planner in 
which a customized heuristic algorithm provides longitudinal vehicle control while the pure 
pursuit algorithm [6] provides lateral vehicle control. Finally, the Path Planner outputs the vehicle 
speed and steering angle to the by-wire control system for execution. In the vehicle platform, all 
components are synchronized through the robot operating system (ROS). In Figure 2, the light 
blue boxes highlight the new components in the two systems that enable the cooperative 
perception function. In the next section, the components of the TScan system and the vehicle 
platform are described in detail. 

Figure 2 Overall Structure of the Cooperative Perception System 

1 https://github.com/Autoware-AI 

https://github.com/Autoware-AI
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1.1 TScan System 

Traffic Scanner (TScan) is a portable microscopic traffic data-acquisition system that utilizes LiDAR 
technology. Two trailer-based prototypes were developed at the Purdue Center for Road Safety 
with support from the Joint Transportation Research Program (JTRP) of the Indiana Department 
of Transportation and Purdue University and the NEXTRANS Center at Purdue University [1]. The 
hardware platform of TScan sensing is shown in Figure 3. 

Figure 3 TScan Hardware Platform 

TScan consists of two LiDAR units: a Velodyne HDL 32E and an Ouster OS1 64. These 
sensors are mounted on tilt/pan motors to allow changing the field of view of the system to 
better cover the area of interest in the field. A fisheye camera is used to record video which is 
only used for investigating scenes selected by the user. All the processing is based on color blind 
LiDAR. All the electronics to control the system and a computer to process the data in real time 
are present in the head unit. 

TScan uses a few minutes of data to identify background. Then, during real time 
operation, the background is removed and the remaining points are clustered. Each cluster 
potentially represents a moving object. These clusters are tracked over time using a combination 
of the Kalman filter for state estimation and the Hungarian assignment algorithm for association. 
The corrected Kalman estimates for every object in the field of view are then broadcast every 0.1 
seconds. More details of the TScan system can be found in [1]. 
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1.2 Vehicle Platform 

Perception based on 3D point cloud data 
In this work, we mainly use LiDAR as the perception sensor. Firstly, we execute a point cloud 
downsampling process, which aims to downsample the raw point cloud data obtained from the 
LiDAR sensor on the CAV. The primary goal of downsampling is to eliminate noise from the raw 
point cloud data, a process influenced by the number of points within a voxel. We have 
configured the voxel size to be 0.01 meters and the measurement range to be 200 meters. 
After downsampling the point cloud, we execute the first stage of ground removal using a ray 
ground filter from the Autoware platform. In the downsampled point cloud, we initially separate 
them radially. Then, the ground is identified using geometric information related to the ego 
vehicle. Within each ray, we determine if a point belongs to the ground based on the distance 
and angle between points. This method successfully removes the ground that is far away from 
the ego vehicle, thereby potentially reducing errors in the downstream clustering algorithm. In 
this study, we set the clipping height at 1 meter and the minimum point distance at 1.5 meters. 
We divide the point cloud into different rays at intervals of 0.08 radius, and points are checked if 
their corresponding radius is larger than 0.01. For ray ground filtering, we set the local max slope 
at 8, the general max slope at 5, and the minimum height threshold at 0.05. Points will be 
rechecked and reassigned to different classes if their distance to the closest point is greater than 
0.2 meters. 

After the ground removal, the Euclidean-based clustering method serves as a clustering-
based detector for identifying the locations of vehicles and VRUs. Data points that are less than 
60 cm above the ground are ignored. This setting is determined by the height of the LiDAR 
mounted on the CAV to eliminate the impact of stationary road obstacles, such as cement piers, 
which are near the area of interest of the experiment. In the clustering algorithm, the clustering 
distance is set to 0.75 meters. The minimum number of points within a cluster is set to 20, and 
the maximum to 100,000. We also perform another voxelization process to downsample the 
point cloud and assure the accuracy of the clustering result. At this stage, the leaf size for 
clustering is set to 0.2 meters. A size-based naïve filtering method is applied to filter out 
stationary and large objects based on the results from the Euclidean point cloud clustering 
algorithm. Only clusters of lengths, widths, and heights ranging between 0.1 m and 1 m are 
recognized as VRUs. The lower bound is incorporated to reduce the impact of noisy predictions. 

Association and Tracking Algorithm 
After obtaining results from the perception module, the detection results are assigned to trackers 
and then updated with a Kalman filter. This Kalman filter-based tracking mechanism is inherited 
from the SORT algorithm [7], which was previously employed for image-based object tracking. 
Figure 4 illustrates a workflow of how SORT is implemented with real-time perception results 
from the surrounding environment. 
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Figure 4 SORT framework with vehicle detection 

Detection results, accompanied by corresponding time information, are obtained through 
the perception module. A constant speed Kalman filter is then applied to predict the expected 
object location from the previous detection. Subsequently, a cost matrix is calculated based on 
the prediction and the current observation result. Using the cost matrix, the Hungarian matching 
algorithm [6] is applied to match the prediction with the current observation. For each initial 
matching result, the cost is checked to ensure it does not exceed a predefined threshold. If the 
cost is larger than the threshold, then the prediction for the previous observation is unmatched, 
and its corresponding track is updated with the prediction only. The unmatched observations are 
used to initialize new tracks, and each observation is considered as the first frame of each new 
track. If the prediction from the previous observation is matched with the current observation, 
the corresponding track is updated with the result of the Kalman filter, which is the posterior 
result after correction with the matched observation. In this framework, the quality of 
association relies on the detector and, thus, is sensitive to noise. 

Information Fusion 
After obtaining data from both the vehicle perception module and BSMs from TScan, we 
implement decision-level information fusion to reduce redundancy in the downstream path 
planning module. As implemented in the CARMA system [8], we execute decision-level fusion. 
In this work, given the same object, we might have detections from both the CAV and TScan. 
Multiple detections can impact the performance of the downstream module. Therefore, we first 
perform a redundancy check, then combine duplicated detections based on location data. If the 
distance between two detections is less than a certain threshold (e.g., one vehicle length), we 
consider them to belong to the same vehicle and use the averaged location. 

Due to the complexity of the experiment site, there might be objects with similar locations 
but completely different kinematic profiles. Therefore, the speed of detection results is also 
taken into consideration when performing decision-level merging. Based on the location, speed, 
and dimensional information of the detected object, we construct a complete bipartite graph G 
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= (S, T; E) for decision-level fusion. In this bipartite graph, S represents the set of infrastructure 
vertices (i.e., bounding boxes detected from the infrastructure side); T represents the set of 
vehicle vertices (i.e., bounding boxes detected from the vehicle side); and E denotes the set of 
edges in the graph connecting S and T. Each edge carries a nonnegative cost c(i,j) of objects i and 
j. This cost function is the weighted sum of multiple factors, including vehicle dynamic features 
(e.g., location and speed) and appearance features (e.g., the shape of the bounding box). Any 
edge that carries a cost higher than a predetermined threshold is removed. For the vertices 
connected to at least one edge, we apply the Kuhn–Munkres algorithm [7] to find the maximum 
matching between two observations representing a single object. Any unmatched vertices are 
considered unique observations, which we retain as the results of the cooperative perception 
process. 

In addition to redundancy removal, we conduct geofencing to eliminate all detected 
objects outside the anticipated detection area. The results, post decision-level fusion from the 
CAV perception and TScan detection, are then fed into the CAV's path-planning module, which 
will be introduced in the subsequent section. 

Path Planner 
The path planner for the CAV can be divided into two parts: lateral control and longitudinal 
control. Similar to [8], a pure pursuit lateral controller is applied for trajectory following. For 
longitudinal control of the CAV, the Gipps car-following model [9] is applied to interact with 
objects in the same lane. Finally, a post encroachment time (PET) [10] based speed planner is 
implemented when the CAV is interacting with objects from the side (e.g., at an intersection). 

For the PET-based speed planner, once an object is detected, we first calculate the 

potential conflict point location, considering the object’s current location, its speed in the x and 
y directions, and the planned trajectory of the CAV. We then ascertain if the object is close to the 

conflict point, and a virtual front vehicle (serving as a red signal) will be placed at the conflict 

point if the object is within a predefined geofencing area, regardless of its speed. In this case, the 

CAV will yield to the object to avoid the crash. If the object is outside the predefined geofencing 

area, we calculate the PET for the object and the CAV. If the PET for the object and the CAV is 

greater than 2 seconds, then the CAV will maintain its constant speed. However, if the PET for 

the object and CAV is less than two seconds, we determine if the object has already crossed the 

conflict point. If not, the CAV's speed is reduced to reach the 2 seconds PET (also yield the object). 

If the object already crossed the conflict point more than 2 seconds ago, then the CAV resumes 

to the free flow speed. 
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CHAPTER 3. EXPERIMENTS 

3.1 TScan Detection Accuracy Test 
First, we validated the accuracy of the TScan detection results. It is critical that the TScan sends 
accurate information regarding object locations. The experiment was conducted in the North 
Stadium parking lot on Purdue University campus on March 17, 2023. The TScan system was 
staged at the north end of the parking lot while the CAV was circling the parking lot as shown in 
Figure 5(a). The blue block represented the TScan system. The yellow shaded areas represented 
the geo-fencing area of TScan and the red circle approximated CAV’s driving route. Detection 
results from the TScan (i.e., the CAV) were sent through BSM to the CAV. The location data in the 
BSM (i.e., GPS coordinates) were compared with the GPS coordinates collected from the CAV’s 
RTK GPS. We considered the coordinates collected from the RTK GPS as ground truth, since it has 
centimeter-level accuracy. 

The distribution of the detection error is shown in Figure 5(b). The coordinates are 
defined to be consistent with the vehicle coordinate system, where the X-axis points forward 
from the vehicle and the Y-axis point to the left when facing forward. Most of the errors in the Y-
axis ranged from -1.5m to 0.5m with a few outliners between -2.5m to -3m. There was a 
systematic error in the X-axis since all errors were positive ranging from about 0.5m to 2.5m. 
However, TScan considered the center of the bounding box as its coordinate while the RTK GPS 
receiver was not installed in the middle of the vehicle. The distance from the GPS receiver to the 
center of the vehicle along the X-axis is about 1.60m. As a result, the actual error distribution 
along the X-axis is about -0.9m to 0.9m. Since the distance from the GPS receiver to the center 
of the vehicle along the Y-axis is only 0.09m, we ignored this small difference. In summary, the 
error distribution validated the detection accuracy of the TScan system. 

                  (a)   Test setup                                                     (b) Error distribution 
Figure 5 TScan Detection Error Analysis 
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3.2 Case Study 
Scenario Setup 
We designed a case study to demonstrate the benefit of the cooperative perception system in 
improving VRU safety at intersections. The experiment was staged at the Purdue Research Park 
parking lot as shown in Figure 6 (a). In the experiment design, a VRU was traveling from west to 
east (red route) while the CAV was traveling from south to north (green route). Their routes have 
a conflict point at the T-intersection. Due to the building and parked vehicles (blue blocks), the 
VRU was occluded and can’t be observed by the onboard sensors of the CAV when it was 
approaching the T-intersection. TScan (yellow circle) was located at the northeast corner of the 
intersection so that it can observe the VRU and CAV at the same time. The orange-shaded areas 
represented TScan’s geo-fencing areas. To ensure safe tests, we built the “VRU” with a Backfire 
G2 skateboard attached to two large U-Hual boxes. The size of the “VRU” was similar to a 
teenager (about 50 inches tall) and we named him “Jack”. The skateboard can be controlled by a 
remote with different speeds.   We conducted three different experiments described as follows. 

• Experiment 1: The VRU and the vehicle are approaching the intersection at the same time 

without TScan and the vehicle is driven by a human driver. 

• Experiment 2: The VRU and the vehicle are approaching the intersection at the same time 

without TScan and the vehicle is driven autonomously. 

• Experiment 3: The VRU and the vehicle are approaching the intersection at the same time 

with TScan and the vehicle is driven autonomously. 

In Experiments 2 and 3, the free flow speed of the CAV was set to 5 m/s. In Experiment 1, the 
driver was asked to drive at a similar speed of 10mph. Our central hypothesis was that TScan was 
able to detect the VRU before he arrived at the intersection which led to a safer and smoother 
vehicle reaction. 

                                (a) Scenario Demonstration             (b) VRU “Reckless Jack” 
Figure 6 Case Study Scenario Design 
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CHAPTER 4. FINDINGS 

In the first experiment, a human driver (from our research team) was asked to drive the vehicle 
to pass the intersection without knowing the VRU’s existence. The driver didn’t even notice the 
appearance of the VRU from the left and crashed into the object as shown in Figure 7 (a). The 
speed profile of the vehicle observed from the TScan is shown in Figure 7(b). It can be seen that 
at the time of impact, the driver didn’t take any actions (e.g., brake). 

(a) Impact time point of the vehicle and VRU 

(b) Vehicle speed profile 

Figure 7 Results of Experiment 1 
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In the second experiment, the autonomous driving system took control of the vehicle and 
followed the same route, and interacted with the VRU. Figure 8 (a) shows the snapshot of the 
first time point that the VRU was detected from the LiDAR (the white box). The distance to the 
CAV was only 14.0m. Figure 8 (b) shows the front camera view at the same moment. It can be 
seen that when the LiDAR captured the VRU, he was already very close to the intersection. The 
CAV detected a potential conflict and applied a hard break to avoid the crash. The trajectory and 
speed profiles of the CAV and the VRU (after detection) are shown in Figure 9. The three time 
points in the trajectory plot are the first time point the VRU was detected (31.7s), the time point 
the VRU passed the conflict point (33.0s), and the time point the CAV passed the conflict point 
(38.1s). From the CAV’s speed profile, it can be seen that after the detection of the VRU at 31.7s, 
it applied a hard brake with an average deceleration of -1.32 m/s2 and a maximum deceleration 
of -5.12 m/s2 to avoid the crash. Compared to Experiment 1 with human drivers, the vehicle was 
able to make a complete stop and avoid the crash due to the detection of VRU and shorter 
reaction time. 

                     (a) Lidar detection results                                             (b) Camera View 
Figure 8 Experiment 2: Lidar and Camera View 

                  (a) Trajectory profiles                                               (b) Speed profiles 
Figure 9 CAV and VRU trajectory and speed profiles of experiment 2 
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In the third experiment, the CAV and VRU were approaching the intersection the same way as in 
Experiment 2. In this experiment, TScan detected the objects in the geofenced area and 
broadcast detected objects in real-time to the vehicle through BSMs. Figure 10 shows a few 
snapshots from the TScan fisheye camera recording of the whole scenario.  

        (a) Objects near the intersection @5:20s             (b) Objects started interaction @5:23s 

          (c) CAV stopped for VRU @5:26s                   (d) CAV passed conflict point @5:30s 

Figure 10 Experiment 3 Scenario Demonstration 
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The trajectory and speed profiles of the CAV and the VRU collected from the vehicle 
platform are shown in Figure 11. The four time points in the trajectory plot are the first time point 
the VRU’s information was received by the CAV from TScan (15.95s), the time point the CAV 
started to react to the VRU due to planned PET (16.69s), the time point the VRU passed the 
conflict point (21.74s), and the time point the CAV passed the conflict point (27.43s). The speed 
profile of CAV showed a smoother trend with an average deceleration of -0.49 m/s2 and a 
maximum deceleration of -2.21 m/s2 , which was much lower than those in Experiment 2. 

   
                          (a) Trajectory profiles                                               (b) Speed profiles 

Figure 11 CAV and VRU trajectory and speed profiles of experiment 3 (from CAV) 

Figure 12 shows the corresponding trajectory and speed profiles recorded from the TScan 
system of the same experiment. The speed profile of CAV also shows that it has slowed down to 
allow the VRU to pass through. The thin yellow line shows the predicted future trajectory of the 
detected objects. The dotted yellow shows the past trajectory. 
             This experiment demonstrated the benefit of cooperative perception from infrastructure 
sensors in improving CAV situation awareness, safety, and driving comfort as well as VRU safety. 
The safety impact can be further demonstrated by the PET plots between the CAV and VRU in 
Figure 13. Figure 13 (a) shows the PET profile in Experiment 2 from the first detection of the VRU 
until the VRU passed the conflict point. When the VRU was detected, the PET was already very 
low. Even though the vehicle took a hard brake, the final PET when the VRU passing the conflict 
point was still smaller than 1s. Figure 13 (b) shows the PET profile in Experiment 3 from the time 
point that the TScan detected the VRU until the VRU passed the conflict point. It can be seen that 
the PET dropped from 5s to around 1s when the CAV started to react to the VRU (at 16.69s). 
Afterward, the PET started to increase and maintained within a safe boundary. 
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Figure 12 CAV and VRU trajectory and speed profiles of experiment 3 (from TScan) 

   (a) PET profile in experiment 2           (b) PET profile in experiment 3 

Figure 13 PET Profile Comparison 
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CHAPTER 5. RECOMMENDATIONS 

5.1. Introduction 

Although in this project, we mainly utilized the cooperative perception system for CAV path 

planning and VRU protection, such systems can be implemented in many other applications. For 

example, detections from both infrastructure and CAV sensors can be fused to improve data 

collection and augment the penetration rate for real time traffic management such as 

intersection management [13,14] and eco-routing [15,16]. Meanwhile, the offline processed 

trajectories can be further utilized to investigate long-term safety performance such as traffic 

conflicts and crash estimation [17,18]. 
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CHAPTER 6. OUTPUTS, OUTCOMES, AND IMPACTS 

The developed cooperative perception system has great benefits in improving safety for 

connected and automated vehicles by improved sensing and perception, especially under 

occluded and long-range situations. Meanwhile, different from most existing infrastructure-

based sensing systems, the TScan system is portable and can be relocated to different locations 

as the environments and traffic conditions change. This feature brings great flexibility and 

adaptation over fixed-location perception systems. The proposed system has the potential to be 

implemented at real-world intersections in the near future. 

The following outputs were generated during the performance of this project: 

Conference Proceeding: 

Chen, H., Bandaru V.K., Wang, Y., Romero, M.A., Tarko A., and Feng, Y. (2023). A Cooperative 

Perception System for Aiding CAVs Navigation and Improving Safety, Accepted in the 

Proceedings of the 2024 TRB Annual Meeting, Washington, DC. The paper has also been 

recommended for publication in Transportation Research Record in 2024. 

The research project supported two graduate students (Yilin Wang, Vamsi Bandaru) and a postdoc 
(Hanlin Chen). Materials from the project helped support a graduate level course – CE 565 (Traffic 
operations and controls). 

A video of the project was published online and can be accessed at: 
https://www.youtube.com/watch?v=5i9v8Sgasb8 

https://www.youtube.com/watch?v=5i9v8Sgasb8
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